:

> f(x)g(x)dx=f(x)g(x)f(x)g(x)dx\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx

> f(x)g(x)dx=f(x)g(x)f(x)g(x)dx\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx


f(x)g(x)f(x)g(x) ()
>{f(x)g(x)}=f(x)g(x)+f(x)g(x)\{ f(x)g(x) \} ' = f'(x)g(x) + f(x)g'(x)

x
>f(x)g(x)=f(x)g(x)dx+f(x)g(x)dxf(x)g(x) = \int f'(x)g(x) dx + \int f(x)g'(x) dx

> f(x)g(x)dx=f(x)g(x)f(x)g(x)dx\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx